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Abstract
1. Integrated step-selection analysis (ISSA) is frequently used to study habitat selec-

tion using animal movement data. Methods for incorporating random effects
in ISSA have been developed, making it possible to quantify variability among
animals in their space-use patterns. Although it is possible to model variability
in both habitat selection and movement parameters, applications to date have
focused on the former despite the widely acknowledged and important role that
movement plays in determining ecological processes from the individual to eco-
system level. One potential explanation for this omission is the absence of readily
available software or examples demonstrating methods for estimating movement

parameters in ISSA with random effects.

. We demonstrated methods for characterizing among-individual variability in both

movement and habitat-selection parameters using a simulated data set and by
fitting two models to an acoustic telemetry data set containing locations of 35
red snapper (Lutjanus campechanus). Movement kernels were assumed to depend
on either the type of benthic reef habitat in which the fish was located (model 1)
or the distance between the fish's current location and the nearest edge habitat
(model 2). In both models, we also quantified habitat selection for different ben-
thic habitat classes and distance to edge habitat, and we allowed for individual
variability in movement and habitat-selection parameters using random effects.

. The simulation example highlights the benefits of a mixed-effects specification,

namely, we can increase precision when estimating individual-specific movement
parameters by borrowing information across like individuals. In our applied ex-
ample, we found substantial among-individual variability in both habitat selection
and movement parameters. Nonetheless, most red snapper selected for hardbot-
tom habitat and for locations nearer to edge habitat. They also moved less when
in hardbottom habitat. Turn angles were frequently near + = but were more dis-
persed when fish were far away from edge habitat.

in any medium, provided the original work is properly cited and is not used for commercial purposes.
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4. We provide code templates and functions for quantifying variability in movement
and habitat-selection parameters when implementing ISSA with random effects.
In doing so, we hope to encourage ecologists conducting ISSA to take full advan-
tage of their ability to model among-individual variability in both habitat-selection

animal movement, individual variability, integrated step-selection analysis, Lutjanus

CHATTERJEE ET AL.
and movement patterns.
KEYWORDS
campechanus, mixed-effect, random effect, red snapper, step-selection function
1 | INTRODUCTION

Our understanding of how individuals move and select for differ-
ent habitat features has been enhanced by technological advances,
including smaller and better tracking devices (Kays et al., 2015),
widespread availability of remote sensing data products (Dodge
et al., 2013; Neumann et al., 2015), and new statistical methods and
software for modelling animal movement (Hooten et al., 2017; Joo
et al., 2020). By tracking individuals in the context of dynamic envi-
ronmental conditions, we can identify the drivers of movement and
predict how movements and species distributions will change as the
environment changes (Cagnacci et al., 2010).

Importantly, individuals frequently exhibit variation in the extent
of their movements, which can have implications for survival and
fitness. For example, Fraser et al. (2001) found that Trinidad killi-
fish (Rivulus hartii) identified in the laboratory as being more bold
also moved more when released into their native streams; killifish
movements were also positively correlated with individual growth in
areas of the stream where predators were present. Individual vari-
ation can often be accommodated using hierarchical models with
random effects, but since most animal movement models are non-
linear in the parameters (e.g. Tracey et al., 2005), this leads to statis-
tical likelihoods with intractable integrals over the random effects
distribution, and thus, no closed form solution exists (note, general
purpose software has been developed in the case of generalized
linear mixed-effects models which suffer from this same issue; see
e.g. discussions in Bolker et al., 2009; Fieberg et al., 2009). Thus,
users must typically rely on numerical approximation techniques
and custom-written code to estimate parameters (Auger-Méthé
et al.,, 2017; Jonsen et al., 2019). Alternatively, many studies have
explored individual variation in animal movement data using linear
mixed-effects models with simple movement metrics (e.g. mean
daily distance moved) as the response variable (Hertel et al., 2020,
2021; Tucker et al., 2018). Although useful for quantifying variation
across individuals and species, these applications focus on variation
in emergent movement patterns rather than the mechanistic drivers
of movement variation at finer spatial and temporal scales.

Integrated step-selection analysis (ISSA) offers an appealing
framework for modelling complex movements in response to local
environmental features (Avgar et al., 2016; Fieberg et al., 2021; Muff
et al., 2020; Northrup et al., 2022). Similar to species distribution

models and resource-selection functions, ISSA infers the importance
of environmental covariates by comparing their distribution at used
versus available locations. However, ISSA offers several advantages
over the former approaches by: (1) allowing for temporally dynamic
covariates that drive species distribution patterns to be included in
the model; (2) using an individual's movements to determine avail-
able habitat; and (3) relaxing the assumption of independence among
locations to an assumption of independent ‘steps’ or movements be-
tween sequential locations. Another advantage of ISSA is the ability
to model both habitat selection, using covariates at the end of the
movement step, and habitat-dependent movement, by allowing an
animal's step lengths (distances between sequential locations) and
turn angles (changes in direction) to depend on habitat at the start
of the movement step (Avgar et al., 2016; Fieberg et al., 2021). This
strength has been widely recognized, and ISSA has been used to
explore how individuals alter their step lengths and turn angles in
response to linear features such as roads and seismic lines (Dickie
et al., 2020; Prokopenko et al., 2017; Scrafford et al., 2018).
Integrated step-selection analysis can be implemented using
statistical software capable of fitting conditional logistic regression
models, but the likelihood becomes difficult to maximize when ran-
dom effects are included (Craiu et al., 2011; Duchesne et al., 2010).
This led Craiu et al. (2011) to develop a two-step approach for fitting
mixed conditional logistic regression models in this context. More
recently, Muff et al. (2020) developed an approach for incorporat-
ing random effects in ISSA by exploiting the equivalence between
Poisson regression with stratum-specific intercepts and conditional
logistic regression. This approach has quickly become commonplace
when modelling habitat selection using data sets that include many
individuals, and allows for both individual- and population-level in-
ference. For example, one can estimate coefficients for a typical
individual by setting all random effects to O (Fieberg et al., 2009,
2010), estimate variance parameters that capture among-individual
variability in the habitat-selection coefficients (Muff et al., 2020),
and explore functional responses in habitat selection by consider-
ing how individual-specific coefficients vary with habitat availabil-
ity or other landscape metrics (Aarts et al., 2013; Matthiopoulos
et al,, 2011). A nice exemplification is Jones et al. (2020), who used
random effects to explore whether variation among individual spot-
ted owls (Strix occidentalis) in their habitat-selection parameters was

related to patch size and configuration in a post-fire landscape.
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Although many studies have explored individual variation in
habitat-selection parameters, little to no attention has been given
to studying variation in movement parameters when using ISSA
with random effects (hereafter ‘mixed ISSA’). One likely reason for
this lack of attention is that the estimation of movement parame-
ters in ISSA is typically done using a complicated two-step process
(Avgar et al., 2016; Fieberg et al., 2021). Tentative movement pa-
rameters are first estimated using observed step lengths and turn
angles, ignoring the effect of habitat selection on observed move-
ments, and then movement parameters are updated using additional
coefficients from the fitted conditional logistic regression model

(Figure 1). This approach is analogous to using importance sampling

Step one: Prepare data & fit model

1. Fit single sampling kernel for
observed step lengths and turn
angles using
amt::fit_distr.

2. Generate time-dependent
random points and form
strata of observed and
random steps using

amt: :random_steps.

to approximate the likelihood of the data (Michelot et al., 2023). The
amt package (Signer et al., 2019) provides functions for implement-
ing this two-step approach, but they only work when fitting models
to individual animals. Furthermore, it is not immediately clear how
this process should be implemented when the goal is to estimate
individual-specific movement parameters.

Here, we demonstrate how mixed ISSA can be used to study
among-individual variation in both movement and habitat-selection
parameters using a simulation example and by analysing an acous-
tic telemetry data set of 35 red snapper (Lutjanus campechanus).
We show how one can visualize individual variation in movement
and habitat-selection patterns, and provide functions within an

3. Fit mixed-effects conditional logistic
regression model using

glmmTMB: : fitTMB, assuming step
lengths come from a gamma distribution
and turn angles from a von Mises

0.04 distribution,
 oas - . R case ~ sl + log(sl) + cos(ta) +
g § y 7 x_start:(sl + log(sl) + cos(ta)) +
E§002 )Kglliiff//t\\\\\t::y<”“v_ X_EIld‘ﬁF
001 > LT (1] step_id) +
! ' (0 + sl + log(sl) + cos(ta) | id) +
0.00

0 50 7

25 5 100
Step length (m)

Step two: Update movement parameters

4a. Typical Individual — Update movement
parameters for a typical individual for fixed effects
with all random effects set to zero using
mixedSSA: :update_dist.

0.04
0.03 .
2 Habitat
2 — Hardbottom
@ 0.02 — Sand
[a] — Tentative
0.01
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Step length (m)
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4b. Individuals — Update movement parameters for
tracked individuals using fixed- and random-effects
using mixedSSA: supdate_dist with the
random_effects_var_name argument set.

004 [\
N\
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ch \ !I[ldiyidlual
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000 ! —
0 25 75 100

50
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FIGURE 1 Schematic diagram of proposed workflow for estimating individual-specific movement parameters from a mixed-effects
integrated step-selection analysis. Although we focus here on visualizing step-length distributions in different environments and across
different individuals in the population, the same process can be used to visualize variation in turn-angle distributions. In Step One-third box
(upper right panel), sl, log(sl), and cos(ta) and interactions are terms used to estimate the parameters of the movement kernel, x_start and
x_end represent environmental predictors at the start and end of each step, respectively, x_start:(sl +log(sl) + cos(ta)) allows the movement
kernel to depend on habitat at the start of the step, x_end is used to model habitat selection, (1|step_id) codes for a fixed-effects intercept
making the model equivalent to a conditional logistic regression (Muff et al., 2020), (O+sl+log(sl)+cos(ta) | id) specifies random effects that
allow each individual to have its own movement kernel and (0+x_end|id) specifies random effects that allow each individual to have its own

habitat selection parameters.
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associated R package (mixedSSA) to facilitate the application of

these methods to other data sets.

2 | INTEGRATED STEP-SELECTION
ANALYSIS

Integrated step-selection analysis assumes that animal space use is
captured by the product of two functions, a movement-free habitat-
selection function, w(.), that represents habitat preferences and a
selection-free movement kernel, ¢(.), that quantifies how the animal
would move in the absence of habitat selection (Avgar et al., 2016;
Fieberg et al., 2021):

WX(s, t+At); B (s, s, x (s, ), w3 7)
[scaWXG, t+ A8 DA, ' X(S, 1), w3 7)dS’
(2.1)

u(s, t+Atls ty) =

where u(s,t+ Atls’,t,y/) represents the conditional probability
of an animal being present at location s at time t + At, given that
it was at location s’ at time t and arrived there via the bearing y;
x(s’,t) and x(s,t + At) are habitat covariates measured at the start
and end of the movement step, respectively; and f and y are sets of
parameters that quantify habitat selection and movement tenden-
cies respectively. Finally, note that the denominator in Equation (2.1)
integrates over the geographic area, G, that represents the area in
which an animal could have potentially moved based on its prior ob-
served movements and ensures that the right-hand side is a proper

probability distribution; s is a dummy variable for integration.

3 | EXAMPLE APPLICATION TO
SIMULATED DATA

To demonstrate the application of mixed ISSA that allows for indi-
vidual variability in movement parameters (Figure 1), we simulate tra-
jectories following Equation (2.1) for a population of individuals with
individual-specific, known parameter values. We also compare the
estimates from the mixed ISSA to those obtained by fitting a separate
model to data from each individual. Doing so highlights the benefits of
using random effects; namely, the ability to borrow information across
like individuals, which leads to improved estimates of individual-
specific parameters (Gelman & Hill, 2006; Harrison et al., 2018).

3.1 | Simulated movements

We generated a set of tracking data for 30 individuals. To do so, we
created a landscape with a single categorical variable representing
two habitat types (A and B). We then simulated movements in which
each individual had its own set of movement and habitat selection
parameters, and in which movements were more directed, on aver-

age, when individuals were in habitat of type B.

SOCIETY

Let sl and 6;, represent step lengths and turn angles, respec-
tively, for individual i in habitat class k (k = 1, 2 for habitats A and B).
The sl;; follow a gamma distribution with individual-specific shape
and scale parameters, a;; and vj4, respectively, and 6;, follow a von
Mises distribution with mean 0 and with individual-specific concen-

tration parameters, k4

sliy ~gamma (a1, vip ) 51)
64 ~von Mises (0, x;y ) ’

We assumed the parameters (a1, vj1, ki1 ) for each individual fol-

lowed a multivariate Normal distribution:

o o2 62 o2
T a a,v a,K
~ ; | = | 2 2 2
[aikvvik”(ik] N(u, %, ) withu,=| v [andE, =| 62 62 o2
I3 62 o2 o
aK V,K
(3.2)

The diagonal elements of X, quantify among-individual variability
in the movement parameters, and the off-diagonal elements quantify
how these parameters covary; non-zero covariances allow individuals
that tend to move more to also exhibit more directed movements (or,
vice versa depending on the sign of the covariance parameters). We
assumed that step lengths and turn angles for movements starting in
habitat B also followed individual-specific gamma and von Mises dis-
tributions, respectively. The parameters of these distributions were

shifted relative to parameters in habitat A using an additive model:

(@ir Vigs Ki2) = (@i, Vi, k1) + (@0, k),

where (a,n and k) are constants. Thus, we allowed each type of move-
ment parameter (a,v and «) to vary by individual, while forcing differ-
ences in parameter values for the two habitat classes to be consistent
across individuals. For example, a;, — a;;=a for all individuals. Finally,
we assumed w(xm) = exp(0.5) when individuals were in habitat B and
W(X,1) = exp(0) when in habitat A. Thus, all individuals preferred hab-
itat B to habitat A.

We generated random parameters, (a4, viy, ki1 ), for each individ-
ual using the mvrnorm function in the MASS R package (Venables &
Ripley, 2002). Sample sizes (number of steps) for each individual were
then generated by rounding random values sampled from a Normal
distribution with mean 2000 and standard deviation equal to 250,
resulting in sample sizes ranging between 1633 and 2627. We then
generated random trajectories using the redistribution_kernel and
simulate_path functions in the amt package of R (Signer et al., 2019,
2023). We set the parameter values used to simulate the trajectories

as follows:

3 025 0.15 0.15
u,=| 1 |andX,=| 0.15 0.20 0.15
4 0.15 0.15 0.25

Lastly, we set (a,n and k)=(0.05, 0.05, 0.05).
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3.2 | Parameter estimation K1i = Ko + Beosio) + Peosio), (3.5)

3.21 | Mixed ISSA Similarly, we could estimate updated parameters for habitat B by in-

We used the following workflow to estimate the parameters in the
mixed ISSA (Figure 1):

1. We parameterized a sampling kernel, qb*(s,s’,y/;’y‘), using the
observed step lengths and turn angles pooled across all in-
dividuals. Here, 7 consisted of a single shape (xp), scale (vp)
and concentration parameter (xy). We set the mean of the
von Mises distribution to O.

2. Using amt's random_steps function, we generated time-
dependent random locations by simulating 10 potential move-
ments from each previously observed location using the sampling
kernel, ¢*(s,s’,y;7) from [1] above.

3. We formed strata by matching each observed step with its set
of random steps. We then used the glmmTMB function in the
glmmTMB package (Magnusson et al., 2017) to fit the equivalent
of a mixed-effects conditional logistic regression model using
these strata and the ‘Poisson trick’ from Muff et al. (2020). We
included the habitat class measured at the end of the movement
step to quantify relative selection for the two habitat types.
As described in Avgar et al. (2016) and Appendix C of Fieberg
et al. (2021), we can obtain estimates of movement parameters
that account for habitat selection if we include specific move-
ment characteristics in our conditional logistic regression model;
these characteristics depend on the assumed distributions used
to model step lengths and turn angles. For our model specifica-
tion using the gamma and von Mises distributions, we need to in-
clude step length, log(step length) and cos(turn angle). Further, to
allow the movement parameters to depend on habitat class, we
need to include interactions between these movement charac-
teristics and the habitat class at the start of the movement step.
Finally, we included random effects for step length, log(step
length) and cos(turn angle) to allow each individual to have its
own set of movement parameters.

4. We estimated the movement parameters in ¢(s,s’,y/;y) using
the sampling kernel, the regression coefficients associated with
movement characteristics (step length, log(step length) and
cosine(turn angle)), and their interactions with habitat class as out-
lined in Avgar et al. (2016) and Appendix C of Fieberg et al. (2021).
Let By, Brogsy @nd Beosey represent the fixed-effects coefficients
associated with step length, log(step length) and cos(turn angle)
respectively. Further, let b, biog),, beosig), represent individual-
specific random effects associated with these variables. We es-
timated updated movement parameters for the reference class

(habitat A) for each individual, i, using:

agi=ag+Phg+by,
1
1
Vo (ﬁ log(s) T blog(sl);)

(3.3)

Vi =

(3.4)

cluding the coefficients for the interaction terms in the above equa-
tions (see e.g. Appendix B of Fieberg et al., 2021 or Appendix S1 for a

similar application to the snapper data).

3.2.2 | Individual models

We followed a similar workflow when fitting models to individuals,
except that we estimated a separate sampling kernel using each in-
dividual's data in Step 1, and we used the fit_issf function in the amt
package when fitting models to each individual's data rather than
glmmTMB in Step 3; the fit_issf function serves as a wrapper func-

tion for the clogit function in the survival package (Therneau, 2023).

4 | APPLICATION OF MIXED ISSA TO RED
SNAPPER

Red snapper are an economically and ecologically important spe-
cies distributed in the Gulf of Mexico and along the eastern coasts
of North America, Central America and northern South America.
They are a reef-associated, demersal, gonochoristic fish spe-
cies that can live 50+ years, maturing around 2years, and they
can exceed 1000mm and 12kg (White & Palmer, 2004; Wilson &
Nieland, 2001). They are generalist predators, with adults feeding
primarily on benthic invertebrates and other reef-associated fishes
(Szedlmayer & Lee, 2004; Wells et al.,2008). In the United States, red
snapper are targeted by both recreational and commercial sectors,
and these fisheries are managed in the Gulf of Mexico by the Gulf of
Mexico Fishery Management Council and in the Atlantic Ocean by
the South Atlantic Fishery Management Council. Previous studies
of red snapper have found an affinity for areas of high to moder-
ate relief near edges of hardbottom habitat (Bacheler et al., 2021;
Bohaboy et al., 2022; Williams-Grove & SzedIlmayer, 2016, 2017).

4.1 | Studyarea

Our study site comprises reef habitat in approximately 37 m deep
water off the coast of North Carolina, USA, between Cape Hatteras
and Cape Lookout (Figure 2). The seafloor of the study site is com-
posed of a patchy mix of rocky pavement and ledges in a matrix of
sand (Figure 2). We used a high-resolution bathymetric map for the
classification of benthic habitat into either sand or hardbottom.

4.2 | Data collection and processing

We caught red snapper from May through September, 2019 using
hook-and-line methods or baited fish traps and tagged them with
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FIGURE 2 (a)Broad-scale location of study (filled black circle) on the continental shelf between Cape Lookout and Cape Hatteras, North
Carolina, USA, in 2019. Water depth is shown in blue: the lightest blue indicates water less than 5m deep, while the darkest blue is greater
than 100 m deep. (b) Close-up view of the study area where a Vemco positioning system was used to estimate fine-scale positions of red
snapper (Lutjanus campechanus). Background shows a multibeam sonar map that is scaled to depth (right y-axis), submersible receivers are
represented by filled black circles, and tagging and release locations are represented by light yellow points. Environmental variables used

in the habitat-selection modelling (c) benthic habitat class (sand or hardbottom) with the submersible receivers represented by filled black

circles; and (d) distance-to-edge habitat.

13g externally attached Vemco V13P-1x transmitters that had an
average battery life of 613 days and a pulse interval of 130-230s.
Locations were collected from May 2019 to December 2019 using
a 400x1200m regularly spaced grid array of 20 VR2AR acoustic
receivers placed on the sea floor (Figure 1, Bacheler et al., 2021). We
used an additional V13P-1x reference transmitter to quantify the
accuracy of data collection between transmitters and acoustic re-
ceivers by deploying it at a known location and quantifying the hori-
zontal error of all estimated positions over the duration of the study.

We converted the location data to a set of steps representing
movements between sequential observations and dropped any
steps that had a step length >100m and a turn angle >170 degrees,
assuming these steps likely resulted from erroneous locations with
large measurement error (Bjgrneraas et al., 2010). We then thinned
the telemetry data to equally spaced intervals of 6 + 1 min using the

track_resample function in the amt R package (Signer et al., 2019).
Finally, we created a distance-to-edge habitat covariate measuring
the nearest distance to habitat separating sand and hardbottom
habitat classes (Figure 2).

4.3 | Mixed ISSA

We expected that both movement and habitat-selection parameters
would vary by individual, but that most individuals would (1) prefer
hard bottom habitat near the edge of reef-sand habitat transition
and (2) move in a more directed manner (longer step lengths with
turn angles near 0) when in sandy habitats or far from the edge of
reef-sand habitat. To accommodate individual variation and test
these assumptions, we used two different mixed ISSAs. In the first,
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we assumed step lengths and turn angles depended on the categori-
cal benthic habitat class variable measured at the start of the move-
ment step, similar to our simulation example. In the second mixed
ISSA, we modelled the distribution of step lengths and turn angles
as a function of a continuous variable quantifying the distance be-
tween the current location and the nearest edge habitat. To allow
the movement kernels, ¢(.), to depend on the habitat at the start
of the movement step, we included step length, log(step length)
and cos(turn angle) as well as interactions between these terms and
the benthic habitat class (model 1) or distance to edge (model 2).
In both models, we also included random effects for step length,
log(step length) and cos(turn angle), thus allowing each individual to
have their own set of movement parameters. We did not, however,
include random effects for interaction terms between step length,
log(step length), cos(turn angle) and habitat class (model 1) or dis-
tance to habitat edge (model 2). Although in principle, these interac-
tions could also be modelled using random effects, this would lead
to a substantially larger number of variance/covariance parameters
that would need to be estimated with relatively few individuals.

For both mixed ISSAs, we modelled the habitat-selection func-
tion, w(.), as a log-linear function of benthic habitat class and dis-
tance to edge measured at the end of the movement step:

W(X(s, t + At); f) = exp(I(Hardbottom(t+At))‘.l.ﬁ1,- +dj(t + At)By),

where i indexes the different individuals and j indexes the move-
ment steps, d;(t + At) is the distance to edge habitat at the end of the
movement step and I(Hardbottom(t+At)),.j is equal to 1 if the end of
the movement step falls in the Hardbottom habitat class, and O oth-
erwise. We used random effects to allow each individual to have its
own set of habitat-selection parameters. We assumed the coefficients
for Hardbottom habitat varied independently from the distance-to-
edge coefficients and that both habitat-selection parameters varied
independently of the movement parameters. Again, alternative speci-
fications of the random effects structure are possible, and the specific
choice should depend on the effective sample size (e.g. number of in-
dividuals) and the user's underlying research questions. We return to
this point in the Section 7.

We estimated parameters using the same workflow as outlined
in Figure 1 and implemented in the application to the simulated
data. We noted, however, that the peak of the snapper turn-angle
distribution was centred on + z. This can occur when individuals are
largely stationary or moving back and forth along linear features. To
allow for a more flexible specification of the von Mises distribution,
we set the estimated mean of the turn-angle distributions to + = and
x to |x| when estimates of k were negative and O otherwise. Finally,
we estimated the mean step length for a typical individual (i.e. one
with all random effects set equal to 0) in sand and hardbottom habi-
tat classes (model 1) and for quantiles of dij(t) (model 2). We used the
delta method to quantify uncertainty in these estimates.

We provide a full set of equations describing the two models

along with the R code needed to implement them in Appendix S1.

5 | SOFTWARE AND DATA AVAILABILITY
We developed an R package, mixedSSA (available at https://github.
com/smthfrmn/mixedSSA) to facilitate the estimation and visualiza-
tion of updated movement parameters. All analyses were carried
out in R 4.0 (R Core Team, 2020). Data and code for reproducing
all of the analyses have been archived in the Data Repository of the
University of Minnesota (https://conservancy.umn.edu/handle/
11299/261582; Chatterjee et al., 2024).

6 | RESULTS

6.1 | Simulation example

As expected, the mixed ISSA resulted in more accurate estimates
of the movement parameters than when fitting separate models to
each individual. Deviations between the estimated and true param-
eters were smaller, on average, for the mixed ISSA (Figure 3), with
root mean-squared errors (RMSEs) that were roughly half that of
the individual model fits. The RMSEs for the shape, scale and kappa
parameters were 0.09, 0.035 and 0.10 for the mixed-effects model
versus 0.18, 0.077 and 0.21 for the individual models.

6.2 | Application to red snapper

A total of 35 individuals were acoustically tagged in this study. The
number of relocations (range 265-52,189) and the number of track-
ing days (range 3-223) were substantially different across individ-
uals (Appendix S2: Table 1). Median horizontal error from 18,026
detections of the reference transmitter was 0.8 m with a range of
approximately 0.6-2.0m (Bacheler et al., 2021). We dropped a total
of 13,802 observations (4% of the total) that did not meet the ex-
pected movement criteria (step length <100 meters and turn angle
<170 degrees).

There was substantial variability in the estimated individual-
specific habitat-selection parameters, with both positive and
negative coefficients for each explanatory variable (Figure 4,
Appendix S2: Figure 2). Comparing mean coefficients and their SEs,
we see that the ‘typical individual’ prefers hardbottom to sand habi-
tat (Figure 4), though the coefficient for I(hardbottom) was negative
for three individuals.

Evaluating movement kernels for an individual with random ef-
fects=0 (Figure 5, Appendix S2: Table 3), we see that the typical
snapper also tends to move less when in hardbottom habitat and as
they get closer to edge habitat. The distribution of turn angles also
becomes more dispersed when fish are farther from habitat edges
(ﬁcos(g):d =0.006; p<0.001; Figure 5). Similar to habitat selection,
there was substantial among-individual variability in both the dis-
tributions of step lengths and turn angles (Figure 6, Appendix S2:
Figure 3) in both models.
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7 | DISCUSSION

An understanding of the causes and consequences of variability in
animal movement and habitat selection is important for addressing
many questions in applied and theoretical ecology (Shaw, 2020). For
example, behavioural ecologists are increasingly interested in study-
ing personalities and behavioural syndromes using mixed-effect
models applied to metrics of animal movement and habitat selection
(Hertel et al., 2020, 2021). Consistent and quantifiable intra- and
inter-individual variability in movement also drives many important
ecological processes, including individual foraging rates, social in-
teractions, disease dynamics and spread of invasive species (Spiegel
etal., 2017; Webber et al., 2020, 2023).

In the behavioural ecology literature, it is common to use the
intraclass correlation coefficient from a fitted linear mixed-effects
model, often referred to as repeatability, to quantify the propor-
tion of variation in a response variable that can be attributed to
the individual-level random effects (e.g. Hertel et al., 2020, 2021).
The ability to use a single summary metric is an attractive feature
of this approach as it can facilitate comparisons across studies and
species (e.g. Stuber et al., 2022). Similar metrics have been sug-
gested in the context of generalized linear mixed-effects models

(e.g. Nakagawa et al., 2017; Stoffel et al., 2021), and it is intriguing to
consider whether they could be adapted to quantify repeatability in
the context of mixed ISSA, particularly those that use the two-step
approach to parameter estimation. Rather than focus on a single
summary measure, however, we encourage users of mixed ISSA to
explore in more detail the various sources of within- and between-
individual variability captured by their models.

Our application to data from red snapper tracked on reef hab-
itat demonstrates how mixed ISSA can be used to study both in-
tra- and inter-specific variation in animal movements. By including
interactions between movement attributes and environmental co-
variates (benthic habitat class or distance to edge of hardbottom
habitat), we were able to quantify how individuals altered their
movements depending on local habitat features. Interestingly,
we found that individuals tended to have shorter average step
lengths in the most strongly selected habitat (i.e. hardbottom hab-
itat). Turn angles also tended to be more dispersed when fish were
close to edges of reef habitat. This combination of shorter step
lengths and more dispersed turn angles is consistent with area
restricted search patterns, suggesting that these locations may
serve as important foraging areas. Similarly, interactions with tem-
poral covariates can be used to study how individuals alter their
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FIGURE 5 Estimated step-length and turn-angle distributions for a typical red snapper, that is, one with all random effects equal to O,
for sand and hardbottom habitat classes (a, c) and different distances to edge habitat (d, f) with estimates of mean step length (i.e. speed) for
sand and hardbottom habitat class (b) or for different quantiles of distance to edge habitat (e). Close, median and far represent the 5th, 50th

and 95th percentiles in panels (d and f).
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movements through time. For example, Prokopenko et al. (2017)
included an interaction between time of day and log(step length)
to model increased movements of elk (Cervus elaphus) during twi-
light hours. Giroux et al. (2023) conducted an ISSA with interac-
tions between movement characteristics and temperature, time of
day and habitat type, finding giant anteaters (Myrmecophaga tri-
dactyla) had more directed movements (longer step lengths, turn
angles more concentrated near 0) when temperatures decreased
during daylight hours, but that temperature decreases were likely
to result in resting behaviours (smaller step lengths and more dis-
persed turn angles) at night.

Random effects associated with each individual allowed us to
quantify among-individual variability in both habitat-selection pa-
rameters and movement kernels. As is often the case, we found sub-
stantial among-individual variability in habitat-selection parameters;
we also found substantial variability in individual movement kernels.
Individual variability in red snapper movement and habitat use likely
has important management implications. For instance, red snapper
vulnerability to capture by fishers is likely related to their movement
and habitat use, which could create the potential for evolutionary
effects of fishing (Claireaux et al., 2018). Similarly, individual vari-
ability in behaviour likely affects detection probabilities of red snap-
per sampled by surveys, and this heterogeneity may bias abundance
estimates. Indeed, abundance estimates from surveys are the most
important data source on population dynamics for stock assess-

ments, which are used by resource managers to inform regulatory

decisions. The large degree of individual variability we observed also
suggests that random effects may be important to properly account
for statistical dependencies arising from having repeated measures
on the same individuals. Ignoring these dependencies will typically
result in the estimators of uncertainty that are biased low (Fieberg
et al., 2010).

The simplest method for accommodating individual variation in
habitat-selection studies is to fit separate models to each individual
(Fieberg et al., 2010). Yet, a complication with this approach is that
it becomes more challenging to estimate population parameters that
quantify among-individual variability. For example, the variance of
the individual coefficients will be impacted by both true variability
and sampling error (Davidian, 2017; Muff et al., 2020). Using the
mixed ISSA, we can directly estimate these variance parameters and
also use the same model for both individual and population-level in-
ference. Furthermore, as our simulation example illustrates, we can
obtain better estimates of individual-specific parameters by borrow-
ing information from like individuals (Gelman & Hill, 2006; Harrison
et al., 2018). Yet, the application of mixed ISSA can be challenging,
especially when analysing data sets containing small numbers of in-
dividuals. Complex models with many random effects can lead to
computational challenges and convergence issues, and users may
need to carefully consider which parameters they allow to vary
across individuals; these types of choices are commonplace when
fitting generalized linear mixed-effects models (Bolker et al., 2009).

Steps used to improve the likelihood of model convergence in linear
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mixed-effects models (e.g. centring and scaling predictors, increas-
ing the number of iterations) are also likely to prove useful for mixed
ISSA (see e.g. Brauer & Curtin, 2018).

In our models, we included random effects for step length,
log(step length) and cos(turn angle) but not their interactions with
habitat class or distance to nearest edge habitat. This decision not
only reduced the number of variance parameters that needed to
be estimated but also constrained the degree of inter-individual
variability that was included in our models. There are other ways
that we could have simplified our model. For example, we could
have assumed that only the scale parameter of the gamma distri-
bution varied across individuals. This choice would have eliminated
the need for a variance parameter (for the shape of the gamma
distribution) and a covariance parameter (for the shape and con-
centration parameters). We could achieve a similar reduction in
model complexity by switching to an exponential distribution for
modelling step lengths. On the other hand, it might be of interest
to explore how movement and habitat-selection parameters co-
vary. Models could be constructed to explore this possibility, but
doing so would require additional covariance parameters which
we assumed to be 0.

Additional research to guide model-building strategies (e.g.
methods for determining an appropriate level of model complex-
ity) would be helpful. The two-step approach to parameter esti-
mation (Avgar et al., 2016; Fieberg et al., 2021) and the Poisson
trick for implementing mixed ISSA (Muff et al., 2020) also com-
plicates parameter interpretation and model inference. Recently,
Klappstein et al. (2024) demonstrated how a variety of ISSAs with
random effects can be fit using the mgcv package (Wood, 2017)
though computation times were longer than when fitting Poisson
models using the glmmTMB package (Magnusson et al., 2017).
Mixed ISSA could also potentially be implemented using Template
Model Builder with the Laplace approximation to integrate over
the random effects distribution (e.g. Auger-Méthé et al., 2017;
Jonsen et al., 2019). General purpose software implementations
that directly fit models for mixed ISSA in a single step would be a
welcome advance.

Although several statistical frameworks have been suggested
for modelling animal movement (Hooten et al., 2017; Patterson
et al., 2017), including state-space models (Patterson et al., 2008)
and diffusion processes in continuous time (Blackwell, 1997;
Michelot et al., 2019), ISSA is arguably the most widely used
method in applied ecology. Its popularity likely stems from the
ability to link movements directly to environmental features and
the availability of robust statistical software for model fitting.
Hidden Markov models (HMMs) offer another popular alterna-
tive for modelling animal movement data (Langrock et al., 2012;
McClintock & Michelot, 2018). In contrast to ISSA, which allow
users to directly model the effects of local environmental features
on movements via a habitat-selection function and a (potentially
habitat-dependent) movement kernel, HMMs rely on latent (un-
observed) states to model temporal variability in movement char-

acteristics (e.g. step lengths and turn angles). Movement-based

HMMs are typically not spatially explicit, and while spatial co-
variates can be used to model the transition probabilities and/or
state-dependent movement distributions, this typically leads to
models with many parameters that are challenging to interpret
(Glennie et al., 2023). Random effects can be used to model in-
dividual variability in either the state transition probabilities or
the state-dependent distributions, but the former approach can
be computationally challenging and unreliable for small sample
sizes (<100 individuals; McClintock, 2021) and the latter approach
has been shown to suffer from parameter identifiability issues
(Glennie et al., 2023). Thus, although software for fitting HMMs
with random effects is now available (Michelot, 2022), it is more
common to fit a single model to data pooled across individuals.
Alternatively, one can fit separate models to data from each indi-
vidual, but then there is no guarantee that the latent states identi-
fied by the individual-level models will have similar interpretations
(Glennie et al., 2023).

Individual variability has long been recognized as fundamental
to understanding broad patterns in ecology, including those that
emerge from the aggregation or interactions of smaller-scale individ-
ual units (Levin, 1992). Recent attention has been given to methods
that scale individual movement models to broader levels of animal
space use or ecological dynamics. These studies include the use of
step-selection analyses to derive utilization distributions and infer
broad-scale patterns in space use (Potts & Borger, 2023), and the
integration of intra-specific variation from movement data in larger
contexts such as community ecology (Costa-Pereira et al., 2022) and
biodiversity studies (Jeltsch et al., 2013). Mixed ISSA can be used
to parameterize movement models for a population of individuals,
which can then be simulated to explore population-level space-use
patterns (Signer et al., 2017, 2023). By providing annotated code
with functions to easily fit and visualize models of animal move-
ment using mixed ISSA, we hope ecologists will take full advantage
of their ability to quantify within- and among-individual variability
in both movement and habitat-selection parameters to better un-
derstand ecological phenomena and species responses to changing

environments.
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